ar X iv : m at h / 02 11 35 2 v 2 [ m at h . A G ] 8 A pr 2 00 3 GAUSS - MANIN SYSTEMS , BRIESKORN LATTICES AND FROBENIUS STRUCTURES
نویسنده
چکیده
— We associate to any convenient nondegenerate Laurent polynomial f on the complex torus (C) a canonical Frobenius-Saito structure on the base space of its universal unfolding. According to the method of K. Saito (primitive forms) and of M. Saito (good basis of the Gauss-Manin system), the main problem, which is solved in this article, is the analysis of the Gauss-Manin system of f (or its universal unfolding) and of the corresponding Hodge theory. Résumé (Systèmes de Gauss-Manin, réseaux de Brieskorn et structures de Frobenius (I)) Nous associons à tout polynôme de Laurent commode et non dégénéré f par rapport à son polyèdre de Newton sur le tore complexe (C∗)n une structure de Frobenius-Saito canonique sur la base de son déploiement universel. En suivant la méthode de K. Saito (formes primitives) et de M. Saito (bonnes bases du système de Gauss-Manin), le problème principal, qui est résolu dans cet article, consiste en l’analyse du système de Gauss-Manin de f (ou de son déploiement universel) et de la théorie de Hodge correspondante. Antoine Douai, UMR 6621 du CNRS, Laboratoire J.A. Dieudonné, Université de Nice, Parc Valrose, 06108 Nice cedex 2, France • E-mail : [email protected] Claude Sabbah, UMR 7640 du CNRS, Centre de Mathématiques, École polytechnique, F–91128 Palaiseau cedex, France • E-mail : [email protected] Url : http://www.math.polytechnique.fr/cmat/sabbah/sabbah.html 2000 Mathematics Subject Classification. — 32S40, 32S30, 32G34, 32G20, 34Mxx.
منابع مشابه
Gauss - Manin Systems , Brieskorn Lattices and Frobenius Structures ( I )
— We associate to any convenient nondegenerate Laurent polynomial f on the complex torus (C∗ )n a canonical Frobenius-Saito structure on the base space of its universal unfolding. According to the method of K. Saito (primitive forms) and of M. Saito (good basis of the Gauss-Manin system), the main problem, which is solved in this article, is the analysis of the Gauss-Manin system of f (or its u...
متن کاملThe Gauss-kuzmin-wirsing Operator
This paper presents a review of the Gauss-Kuzmin-Wirsing (GKW) operator. The GKW operator is the transfer operator of the Gauss map, and thus has connections to the theory of continued fractions – specifically, it is the shift operator for continued fractions. The operator appears to have a reasonably smooth, well-behaved structure, however, no closed-form analytic solutions are known, and thes...
متن کاملep - t h / 96 08 09 2 v 1 1 4 A ug 1 99 6 Notes on the Wigner Representation Theory of the Poicaré Group , Localization and Statistics
It has been known that the Wigner representation theory for positive energy orbits permits a useful localization -concept in terms of certain lattices of real subspaces of the complex Hilbert -space. This framework was recently used by Brunetti, Guido and Longo in order to construct interaction-free nets of local algebras without using non-unique ”free field coordinates”. It is shown that this ...
متن کاملAbstracts of Papers Submitted for Presentation to the Society
S OF PAPERS SUBMITTED FOR PRESENTATION TO THE SOCIETY The following papers have been submitted to the Secretary and the Associate Secretaries of the Society for presentation at meetings of the Society. They are numbered serially throughout this volume. Cross references to them in the reports of the meetings will give the number of this volume, the number of this issue, and the serial number of ...
متن کاملA pr 1 99 5 High Temperature Expansions and Dynamical Systems
We develop a resummed high-temperature expansion for lattice spin systems with long range interactions, in models where the free energy is not, in general, analytic. We establish uniqueness of the Gibbs state and exponential decay of the correlation functions. Then, we apply this expansion to the Perron-Frobenius operator of weakly coupled map lattices.
متن کامل